Proteins and Amino Acids

Proteins are composed of amino acids.
Amino acids are the essential nutrients.
The dietary provision of amino acids in the correct amount and provisions determines the adequacy of the protein in the diet.

Review...

Most limiting amino acid concept...
- Def: the amino acid found in the diet at the lowest concentration relative to the animals requirements.
- Finishing diet formulated to contain 13.2% CP would contain:
 - .61 Lys (req. 0.60) \(\times \frac{.61}{.60} \times 100 = 102\% \)
 - .22 Met (req. 0.16) \(\times \frac{.22}{.16} \times 100 = 140\% \)
 - .54 Thr (req. 0.41) \(\times \frac{.54}{.41} \times 100 = 130\% \)
 - .16 Trp (req. 0.11) \(\times \frac{.16}{.11} \times 100 = 145\% \)

Which AA is most limiting?
- 1st limiting = Lys
- 2nd limiting = Thr
- 3rd limiting = Met
- 4th limiting = Trp

Finishing diet formulated to contain 13.2% CP would contain:
- .61 Lys
- .22 Met
- .54 Thr
- .16 Trp

Therefore, if you formulated the diet on a Lys basis, the diet would be sufficient in all AA.

If the diet was formulated on a Thr basis, it would be deficient in Lys.
Nutrient Requirements...

- AA requirements for the growing pig are related to the rate of protein accretion, energy intake, and dietary energy density.
- Growing pigs
 - Daily Lys requirement = \[\text{Lys}^\text{Maintenance} + \text{Lys}^\text{Protein accretion} \]

Protein:Energy Relationship

- Protein accretion requires energy.
- Up to a point, protein accretion is linearly correlated with energy intake.
- Animals usually consume enough feed to meet their energy requirements if given ad libitum access to feed.

Lys Requirement...

- The Lys requirement can be expressed as a ratio of Lys:Energy.
- The Lys requirement (% or g/kg_\text{diet}) increases with increasing energy concentration in the diet.
- \(\uparrow \text{[ME]}_\text{diet} \rightarrow \downarrow \text{Feed Intake} \)

AA Requirements...

- Amino acid requirements can be listed as a ratio of the AA to Lys.

How much Lys should be in the diet?

<table>
<thead>
<tr>
<th>Body Weight (kg)</th>
<th>3–5</th>
<th>5–10</th>
<th>10–20</th>
<th>20–50</th>
<th>50–80</th>
<th>80–120</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME (kcal/kg)</td>
<td>3,265</td>
<td>3,265</td>
<td>3,265</td>
<td>3,265</td>
<td>3,265</td>
<td>3,265</td>
</tr>
<tr>
<td>Lysine (%)</td>
<td>1.50</td>
<td>1.35</td>
<td>1.15</td>
<td>0.95</td>
<td>0.75</td>
<td>0.60</td>
</tr>
</tbody>
</table>
What if we increase the dietary ME level?

Amino acid ratios relative to Lys?

- Can we adjust other amino acid levels?
- If so, how, and to what level?

Protein Quality...

"Protein Quality" increases as the ratio of amino acids in the feedstuffs more closely resembles the ratio of amino acids required by the animal.

Amino Acid Ratios...

Maintaining the Lys:ME?

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>% of Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td>3.02</td>
<td>100</td>
</tr>
<tr>
<td>Met</td>
<td>.67</td>
<td>22.2</td>
</tr>
<tr>
<td>Thr</td>
<td>1.85</td>
<td>61.3</td>
</tr>
<tr>
<td>Trp</td>
<td>.65</td>
<td>21.5</td>
</tr>
</tbody>
</table>
Converting to a Lys basis...

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>% of Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amino Acid Ratios Relative to Lys

The Concept of an “Ideal” Protein

Must contain all EAA, and in the correct ratios.

Proteins and Amino Acids

The closer the amino acid profile of the dietary protein to that of the tissue or product being produced, the better the biological value and efficiency of utilization.

There is a high correlation between AA requirements for growth and the amino acid composition of the carcass.

Proteins and Amino Acids

Diet	Metabolism	Cell & Tissue Proteins
EAA	Muscle	100 units lys
	114 units arg	
	32 units his	
	46 units met	
	66 units phe	
	56 units tyr	

Proteins and Amino Acids

Diet	Metabolism	Animal Cells & Tissue
EAA	Muscle	100 units lysine
	114 units arg	
	32 units his	
	46 units met	
	66 units phe	
	56 units tyr	

Muscle
Proteins and Amino Acids

V. The Concept of an “Ideal” Protein

A. Practical application: The requirements for EAA can be calculated if the lysine requirement is known.

B. Examples from the NRC Table
 1. Maintenance
 2. Protein Accretion
 3. Lactation

Converting to a Lys basis...

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>% of Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys</td>
<td>.95</td>
<td>100</td>
</tr>
<tr>
<td>Met</td>
<td>.25</td>
<td>26.3</td>
</tr>
<tr>
<td>Thr</td>
<td>.61</td>
<td>64.2</td>
</tr>
<tr>
<td>Trp</td>
<td>.17</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Ideal protein concept...

Proteins and Amino Acids

VI. Feed ingredients contain various proteins that are digested to provide amino acids.

A. Soybean meal - 44 or 48% crude protein
 1. Low in sulfur amino acids, but a good source of other amino acids.

B. Corn gluten meal
 1. A good source of sulfur amino acids.

Amino Acid Ratios Relative to Lys

Deficits can be covered by blending complimentary ingredients together, or by providing synthetic amino acids.
Bioavailability - the availability of a given nutrient for absorption by the animal.

A given feed ingredient may contain 2 g of Lys/kg, but only 1.5 g may be available to the animal for absorption.

Digestibility...

\[
\text{Digestibility} = \frac{\text{Amt. of Nutrient in Feed} - \text{Amt. of Nutrient in Feces}}{\text{Amt. of Nutrient in Feed}} \times 100
\]

However, digestibility based on fecal amino acid excretion does not accurately represent the amount or proportion of amino acids digested by the animal.

Why not???

Nutrient Requirements

Feed In -> Ileum -> Feces Out

Available (digestible)

A more accurate estimate of the amino acid availability to the animal.

Ileal digestibility...

\[
\text{Ileal digestibility} = \frac{\text{Amt. of Nutrient in Feed} - \text{Amt. of Nutrient in Ileal digesta}}{\text{Amt. of Nutrient in Feed}} \times 100
\]
Apparent ileal digestibility...

$$\frac{[\text{AA}]_{\text{feed}} - [\text{AA}]_{\text{digesta}}}{[\text{AA}]_{\text{feed}}} \times 100$$

Ileal digesta contains amino acids from two sources:
1. Unabsorbed feed amino acids
2. Amino acids from endogenous origin
 - Sloughed cells
 - Non reabsorbed digestive enzymes

True AA digestibility...

* Apparent AA digestibility is adjusted to account for endogenous losses

$$\frac{[\text{AA}]_{\text{feed}} - [\text{AA}]_{\text{digesta}} + [\text{Endogenous AA}]_{\text{digesta}}}{[\text{AA}]_{\text{feed}}} \times 100$$

True AA digestibility...

* Difficulty in determining True AA digestibility lies in the difficulties associated with determining endogenous AA losses

Problem:

10.0 g lysine consumed in 1000 g feed (1% of diet)
2.1 g ileal lysine remaining, 7.9 g absorbed
0.3 g endogenous ileal lysine

Apparent: 1. \(\frac{10 - 2.1}{10} = 79\% \ (0.79\%)

True: 2. \(\frac{10 - (2.1 - 0.3)}{10} = 82\% \ (0.82\%)