NUTRIENTS AND THE ENVIRONMENT

Tayo Adedokun Lilly 2-119 sadedoku@purdue.edu

Measures taken to reduce nutrient excretion

Pre-excretion approach (diet modification)

Nutrient input mass reduction (feeding strategy)

- Reduction in dietary CP
- Reduction in dietary inorganic P (phosphate)
- Ingredient selection/processing (e.g. DDGS)

Nutrient form modification

- pH manipulation of diet
- Ammonia binding urease inhibitor

Measures taken to reduce nutrient excretion

Post-excretion approach

- Decreased pen surface pH acidification (Shi et al., 2001)
- Use of urease inhibitors and/or essential oils (Parker et al., 2004)
- Absorbing NH₃ with zeolites (Eng et al., 2004) (chemical amendment)

	Total N	NH ₄ -N	P_2O_5	K ₂ O
Lagoon Effluent	5	5 4 3		4

	11	$\mathbf{F}_2\mathbf{O}_5$	K ₂ U	
Corn Needs	100	40	40	

		Body We	eight (kg)	
	10-20	20-50	50-80	80-120
Total P	.60	.50	.45	.40
Available P	.32	.23	.19	.15

Natuphos Phytase

- 3-phytase
- Aspergillus ficuum gene
- Submerged liquid fermentation
- pH optima: 2.5 and 5.5
- Available in liquid and dry form
- Variety of levels, up to 10,000 U/g

Ronozyme Phytase

- 6-phytase
- Peniophora lycii gene
- Submerged liquid fermentation
- pH optima: 4.5
- Available in liquid and dry form
- Ronozyme CT- increased heat stability
- 2,500 U/g

Things to consider when comparing phytases...

- Efficacy
- Cost
- Heat stability
- Stability in feed
- Application method

The effect of phytase on P digestibility

- Things to consider...
- How to compare studies...
- Equivalency vs. Released values...

- Market Hog assumptions
- Consume 707 lb feed (2.65 F:G from 50 to 250 lb)
- .5% total P in diet
- Excretes 1.94 lb of P
- If Phytase is Added to the Diet and P is reduced .1%
- decrease P excretion 30%
 - .58 lb less P excreted per hog

The Big Picture

- 57,143,000 hogs produced annually in the U.S.
- Phytase supplementation
- Decrease P excretion by 16,629 tons

Nitrogen

- N cycling has doubled anthropogenic actions (Smil 1990)
 - Production and use of N fertilizers
 - Planting of N-fixing crops
 - Burning of fossil fuels
- Agricultural contribution to increased N emission – 50 to 90% (Howarth et al., 2002)

Nitrogen

Where does N come from in the diet?

Functions of Amino Acids Functional components of: Muscle Bone Connective tissue Milk production Cellular and tissue repair Regulation of body water Transport of oxygen and carbon dioxide Mineral transport

- Enzymes
- Energy

Essential vs. Nonessential

- Essential AA must be supplied by the diet
- Nonessential AA can be synthesized by the animal

Limiting amino acid concept...

Diet formulation....

Farm: F	ADCLIFE -	Scott Radcliff	ot: 5 - Expe	riment 03-0	Ration: 9) - Example f	or class
Wt-	Sex=	Conversion	Gair	n= A	nimal Typ	e=SWINE	GRWFN
- Fea	sible —	I.	EAST COST N	INTRIENT I	DISPLAY -		
					LOIDIG		
NUM	NAME	UNIT	MIN	MAX	CUR AMT	SUG AMT	PERCENT
, 1 We:	iaht	Lbs	. 5511	. 5511		> .5511	1.00/Wt
2 Dr	Matter	Lbs				.4900	88.90/WT
107 HE	-Poultry	KCAL/LE	3			1371_968	
110 Cr	ude Prot	% of ₩	(24.000)			17.9292)
111 Ly:	sine	% of ₩	.9500	.9500		> .9500	
130 Ca	lciun	% of ₩	.6500	.6500		> .6500	
131 Ph	osphorus	% of ₩	: (.7000)			> .6035	
132 Ph	os - Av	% of ₩	. 3000	.3000		> .3000	
134 So	dium	% of ₩	: (.1000)			. 1483	
135 Ch	lorine	% of W	5			.2581	
112 Ar	finine	% of W	5			1.1446	
113 Hi	stidine	* of W	5			.4957	

	-					_				
Farm: KA	DCLIFE - S	Scott Haddliffe		Lot: 5 - Expe	inment UJ-U1		Ration:	10 - Ea	cample I	or class
Wt-	Sex=	Conversion=	Gain	- Anin	nal Type=S\	WINEGRW	FN			
Day Ect B	stch [AE-DM] As Fed/Dry								
Percentage		Y As Fed Y			No Ration					Feasible
Code	Mix Code	Name	Ingr Type	Price \$/CWT	Current Bation	Min AF%	Max AF%	Ratio Grp	Ratio Amt	Suggested Ration
σ	79 P	Corn, Ground	11 21	4.65				_		78.9
0 2	16 P	Soya MI - 50	21	12.75						16.8
4	17	DiCalcium Ph	51	15.00						1.2
σ 7.	25	CWG	0			1.00	1.00			1.0
- 4	10	Linestone	51	2.05						.7
4	98	Salt	61	5.00		.35	.35			.3
3	00 B	Lysine	56	90.00		.30	.30			.3
7	10 B	Swine Vit Px	46	50.00		.15	.15			.1
4	30	OTC/CTC50g/#	0			.10	.10			.1
7	15 B	Swine Tr Min	46	60.00		.09	.09			.0
3	01	L-Thr	21	J 100.00						.0
σ 3	54	Se premix	56			.05	.05			.0
3	05 B	Methionine99	56	100.00						.0
3	02	L-Trp	21	100.00						.0
	_									
	_									
	_									

W Swine Ration Ba	alancer (Solution Displa	ıy Screen)				_	
Farm: RADCLI	FE - Scott Radclif _{LC}	ot: 5 - Experim	nent 03-(p	tation: 1	0 - Example I	for class	
Wt= Sex-	Conversion=	Gain	- A	nimal Tyj	pe=SWINE	GRWFN	
Feasible	LE	AST COST NU	TRIENT D	ISPLAY -			
NUTRIENT							
NUM NAM	E UNIT	MIN	MAX	CUR AMT	SUG AMT	PERCENT	
1 Weight	Lbs	. 5511	. 5511		> .5511	1.00/\th	4
2 Dry Matt	er Lbs				.4893	88.78/fft	
107 ME-Poult	ry KCAL/LB				1396-108	、 、	1.5
110 Crude Pr	ot % of Wt	(24.000)	0500		14.8862	,	
111 Lysine	* 01 Wt	. 9500	. 9300		> .9500		
130 Calciul	∜of Wh	.0300	. 6300		> .6300		
132 Phose - A	ան ճնքան ա	3000	3000		> .3114		
134 Sodium	. sof Wt	(. 1000)			. 1483		
135 Chlorine	sof Wt.	(. 1000)			. 2587		
155 Childrine	• 01 IIC				.2301		_

- Incorporating synthetic Lys, Met, Thr, and Trp into a G/F swine diet results in a 3.04 %-unit decrease in CP content of the diet (17.93-14.89 = 3.04)
- This is equivalent to a 17% reduction in CP/N content of the diet (3.04/17.93*100 = 16.95%)

